Figure 5 ELISA control experiments. A. Spiking with cholesterol at the end of the growth period does not alter Lewis antigen expression. Cultures of H. pylori were
grown overnight in defined medium without (control) or with 50 μg/ml cholesterol (cholesterol grown). A third flask (cholesterol spiked) was grown in the absence of cholesterol, chilled on ice, and an equivalent amount of cholesterol was added before the cells were harvested. Lewis antigens were quantitated in duplicate by whole-cell ELISA, loading 300 ng cellular protein per well. Ratios for plus:minus cholesterol were calculated from average net absorbance readings in each assay, and the plot displays mean ratios ± sem for three to five independent ELISA runs. P values were calculated in two-tailed Student t-tests for the null hypothesis that Selleckchem GDC0449 the ratio equals 1. For comparisons labeled ns, P > .05. B. Equivalent binding of cells to ELISA plates. Samples of H. pylori that were grown in parallel cultures in the absence (white bars) or presence of 50 μg/ml cholesterol (grey bars) were applied to multiwell plates in the same manner as for Lewis antigen ELISA assays,
adding 500 ng of cellular protein per well. Following overnight TGF-beta inhibitor attachment, wells were washed twice with Dulbecco’s phosphate-buffered saline, then protein in adherent cells was quantitated selleck products using the BCA reagent. Mean values ± sd of quadruplicate wells are shown. Detection of Lewis X and Y by immunoblotting with the same monoclonal antibodies produced a different result (Figure 6). In several attempts using this technique, we did not detect any cholesterol-dependent differences in Lewis X or Y levels, apart from a small increase in Lewis X in 43504 that was only marginally significant. The blotting procedure employed LPS samples extracted from cell lysates, and in
principle should detect the entire cellular Lewis antigen pool, whereas the whole-cell Selleck Cobimetinib ELISA method is designed to detect only that presented on the extracellular surface. The interesting difference in results between our ELISA analyses and immunoblots suggests a change in cellular compartmentation of the Lewis antigen depending upon the availability of cholesterol in the growth medium. Figure 6 Lewis X and Y antigen profiling by immunoblotting. Samples of LPS isolated from parallel cultures grown in the absence (-) or presence (+) of 50 μg/ml cholesterol were resolved on 15% urea gels. Quantities loaded per lane, as μg of initial lysate protein, are given at the top of each lane. Following transfer, antigens were immunodetected with monoclonal antibodies specific for Lewis X (upper panel) or Lewis Y (lower panel). A representative example of each is shown. Side lanes contain prestained protein markers (M) or 400 ng of E. coli O111:B4 LPS. Antigenic signal appeared only in the O-chain regions of these H. pylori strains; blank areas have been cropped out accordingly.