burnetii infected THP-1 cells regardless of ongoing bacterial protein synthesis. These results confirm that genes with significant mRNA expression changes by oligonucleotide microarrays analysis are differentially expressed when measured by RT-qPCR. Figure 4 RT-qPCR of selected genes confirms microarray expression trends. A, shows the microarray data of the INCB028050 cost genes used to confirm microarray expression trends. Fold difference (-CAM)
is the fold change of differentially expressed THP-1 genes in response to C. burnetii infection after mock treatment. Fold difference (+CAM) is the fold change of differentially expressed THP-1 genes in response to C. burnetii infection after CAM treatment. B, difference in mRNA levels in selected genes relative to β-actin. An equal amount of total RNA from each sample was analyzed by RT-qPCR. The Y-axis represents fold changes
in gene expression while X axis shows the conditions under which gene expression was observed (mock and CAM treated, and uninfected and C. burnetii infected THP-1 cells). U-CAM, uninfected THP-1 minus CAM. U+CAM, uninfected THP-1 plus CAM. I-CAM, infected THP-1 minus CAM. I+CAM, infected THP-1 plus CAM. The results represent the mean of three biological samples and three technical replicates of each sample. Error bars represent the s.e.m. Discussion Bacterial effector proteins are crucial to the survival and growth of intracellular pathogens within the eukaryotic cellular environment. These interactions may be at a myriad of pathways or click here at points within a single pathway. Moreover, the growth of C. burnetii within the lumen of the PV would require the mediation of interactions with the host cell using effector proteins, which are MK-4827 concentration predicted to be delivered by the pathogen’s type IV secretion system [10, 11, 19]. The goal of this study was to identify host genes that are specifically manipulated by C. burnetii proteins. Our hypothesis was that the Sitaxentan expression of host cell genes will be changed by infection with C. burnetii NMII and that the expression of a subset of these genes will be directly affected by ongoing
bacterial protein synthesis. Identification of such genes will aid in the understanding of host molecular mechanisms being targeted by C. burnetii during growth. In order to identify the host genes regulated by C. burnetii proteins, we compared CAM and mock treated mRNA profiles of THP-1 cells following a 72 h infection with C. burnetii. Microarray data analysis shows that the majority of host genes were up- or down regulated similarly in both the mock and CAM treated array sets, suggesting that most THP-1 genes were not differentially modulated at the RNA level by active C. burnetii protein synthesis. We had predicted that the majority of expression changes in the host cell would be in response to the physical presence of bacteria within the cell.