Subjective interpretation of the immunoblots further diminishes a

Subjective interpretation of the immunoblots further diminishes accuracy of the test with only 70-80% serological test efficiency noted for diagnosis of Lyme disease. However, accuracy of a single C6 ELISA test sensitivity is reported to be slightly higher for Lyme disease than the two-tier serological test [27]. The positive predictive

value of these serological tests depends both on the prevalence of the disease in the area, and on the sensitivity and specificity of the test. Moreover, their predictive value varies among different laboratories depending on which commercial kit is used [36–38]. Furthermore, antibodies persist in the patients long after the disease is cured such that serological tests cannot be used as a test of cure. In addition, it is difficult to assess reinfection in the endemic SRT2104 in vitro regions. PCR-based assays have been tried for the diagnosis of Lyme disease, but, by virtue of their design, they have Ferrostatin-1 had only a limited level of success [39–41]. A. phagocytophilum

and B. microti infect white and red blood cells, respectively, but are not easily detectable in blood. This offers additional risk since they Blasticidin S can also be transmitted through blood transfusions and potentially vertically from mother to infant [19, 42–44]. The presence of Babesia species is usually visualized by microscopic examination after Giemsa staining; however, it is frequently overlooked, because of the infection of less than 1% of erythrocytes or due to hemolysis during the sample transport. Higher parasitemia due to Babesia infection is usually fatal. Serological tests and PCR have been found to be more sensitive for its detection [45, 46]. Microscopic detection of A. phagocytophilum morulae in blood smears is also difficult because <0.1% of neutrophils may show their presence [47]. Like B. burgdorferi, A. phagocytophilum lacks lipopolysaccharides and displays a large number of immunogenic proteins on the bacterial surface, making serological tests feasible. However, similar to Lyme disease, serodiagnosis of HGA fails to detect active disease

[34, 48, 49]. Therefore, an assay that can identify these two tick-borne pathogens, in addition to detecting Lyme spirochetes will be ideal, cost-effective and will facilitate design of proper treatment strategies for bacteria acetylcholine versus parasite. Due to the presence of nucleases in the serum, nucleic acids of the pathogens do not persist in the host much longer after the disease is cured [50]. Therefore, PCR and other nucleic acids-based assays have been used as test of cure for a variety of infectious diseases [51–53]. Selection of proper PCR targets and conditions along with the use of efficient detection probes are critical for the development of sensitive and specific diagnostic assays. Molecular beacons are hairpin-shaped oligonucleotide probes that are highly specific for their target sequences and can be labeled with distinguishably colored fluorophores [54].

Comments are closed.