Furthermore, it is easy to be vapor-deposited at room temperature

Furthermore, it is easy to be vapor-deposited at room temperature while providing excellent gap filling between high aspect ratio nanostructures, as will be ideal for infiltrating CNTs without sacrificing their alignment. So far, CNT forests embedded in parylene have been reported for several applications such as electrochemical sensors [15] and porous membranes Rigosertib order [18], but it is still necessary to fully explore usage of this polymer in composite membranes for gas separation. In the previous studies on the non-Knudsen transport phenomena in Veliparib concentration CNT-based membranes [19, 20], the effects

of temperature on the permeation behaviors have not been well elucidated. Therefore, we investigate the effects of temperature on the permeation behaviors of membranes containing VACNT [21]. For most gases, the permeance firstly increased as the temperature rose up to 50°C and then decreased with further increasing temperature. The changed permeance with temperature and the temperature-dependent gas permeance both suggested that the gas diffusion in CNT channels does not fully conform to the Knudsen diffusion kinetics, and other diffusion mechanisms of gas molecules might exist. Methods Water-assisted chemical vapor deposition (CVD) technique

was employed to synthesize VACNTs at 815°C using high-purity ethylene (99.9%) as carbon source. Al2O3 (approximately 40 nm)/Fe (1.4 nm) bilayer films were evaporated on Si (100) substrate as catalysts. Mixture of pure argon (99.999%) and H2 (99.999%) with a total flow rate of 600 sccm was used as the carrier gas. Water vapor RGFP966 clinical trial was employed as catalyst preserver and enhancer and was supplied by passing Anidulafungin (LY303366) a portion of the carrier gas Ar through a water bubbler [22, 23]. Typically, the growth of CNT forests was carried out with ethylene (100 sccm) under a water concentration of 100 to 200 ppm for 10 s [24]. And CNT forests of 8 to 10 μm in height were obtained. To fabricate VACNT/parylene membranes, parylene was used to impregnate the spaces among VACNTs through a low-pressure CVD method. The as-synthesized VACNTs on Si substrates were placed in a deposition instrument (Parylene

Coating System-2060 V, Shanghai PAL Chetech Co. Ltd, Shanghai, P.R. China). In a vacuum of 0.1 Torr, para-xylene monomer was polymerized to form parylene films on the CNT arrays, which was kept at room temperature. Ten-micrometer-thick parylene films were deposited, and the deposition rate was kept at 1.2 μm/h. After parylene deposition, the composite membranes were heated up and held at 375°C for 1 h in Ar atmosphere to allow the parylene to reflow. Subsequently, a planar surface of the membrane was formed. The membrane was then cooled at room temperature at a cooling rate of 1°C min-1. After polymer infiltration and annealing, an Ar/O2 plasma etching process was carried out to remove the excessive parylene and open up the CNT tips [25–27].

Comments are closed.