The harvested BMDC were divided into groups and further cultured for 18 hr in medium alone as control or in the presence of rHp-CPI, LPS, CpG, LPS plus rHp-CPI or CpG plus rHp-CPI. The BMDC were stained and analysed for the expression of co-stimulatory and
MHC-II molecules. The results show that treatment of the immature DC with rHp-CPI alone reduced the expression of the MHC-II molecule but did not alter the frequencies of CD11c+ DC that express CD40, CD80 and CD86 and the expression levels of these molecules compared with medium control group (Fig. 5a,b). The immature DC stimulated with LPS showed significantly increased expression of CD40 and CD80 (both the frequencies of positive cells PD-1/PD-L1 tumor and the MFI) compared with medium control, and rHp-CPI treatment reduced the increased CD80 expression in response to LPS stimulation, but had no effect on CD40 expression (Fig. 5a,b). CpG stimulation of the immature BMDC also induced enhanced expression of CD40 and CD80. The rHp-CPI inhibited the increased expression of CD40 and CD80 induced by CpG (Fig. 5a,b). We further examined the cytokine production by BMDC and observed that the differentiated immature
BMDC with or without rHp-CPI treatment produced minimal levels of IL-6, IL-12p40 and TNF-α. Stimulation of the immature BMDC with LPS and CpG induced increased production selleckchem of these pro-inflammatory cytokines. The rHp-CPI treatment reduced the IL-6 production induced by both LPS and CpG, and TNF-α production induced by CpG (Fig. 5c). These results show that although treatment of rHp-CPI alone did not alter immature BMDC co-stimulatory molecule expression and cytokine production, it modulates these activation responses of DC induced by LPS and CpG. To determine whether the T-cell activation function of DC is altered by rHp-CPI, DC and CD4+
a T-cell co-culture assay was performed. Bone marrow cells were cultured in the Niclosamide medium containing GM-CSF as described above. The immature BMDC were harvested on day 7, re-plated and cultured for 24 hr to obtain matured DC. Mature BMDC were incubated either in medium alone or with rHp-CPI for 2 hr and then pulsed with OVA antigen. The two groups of DC were then co-cultured with OVA-specific CD4+ T at the ratio of 1 : 2. As shown in Fig. 6(a), BMDC treated with rHp-CPI before OVA antigen pulsing induced a lower level CD4+ T-cell proliferation response than the BMDC that were pulsed with OVA only. CD4+ T cells co-cultured with BMDC that were treated with rHp-CPI and pulsed with OVA produced significantly less interferon-γ than the CD4+ T cells co-cultured with BMDC pulsed with OVA only (Fig. 6b). In this DC and CD4 T-cell co-culture, no significant levels of IL-4, IL-10 and IL-13 were detected. Adoptive transfer of BMDC was performed to further assess the effect of rHp-CPI on the function of DC. Mice were transferred with enriched BMDC that were pulsed with OVA with or without pre-treatment of rHp-CPI and boosted 4 weeks later with OVA antigen.